Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.

Identifieur interne : 000A97 ( Main/Exploration ); précédent : 000A96; suivant : 000A98

Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.

Auteurs : RBID : pubmed:22324463

English descriptors

Abstract

Kinetic models for nucleation, denucleation, Ostwald ripening (OR), and nanoparticle (NP) aggregation are presented and discussed from a physicochemical standpoint, in terms of their role in current NP preparations. Each of the four solid-state mechanisms discussed predict a distinct time dependence for the evolution of the mean particle radius over time. Additionally, they each predict visually different particle size distributions (PSDs) under limiting steady-state (time-independent) conditions. While nucleation and denucleation represent phase transformation mechanisms, OR and NP aggregation do not. Thus, when modeling solid-state kinetics relevant to NP processing, either the time evolution of the mean particle radius or the fractional conversion data should be fit using appropriate models (discussed herein), without confusing/combining the two classes of models. Experimental data taken from the recent literature are used to demonstrate the usefulness of the models in real-world applications. Specifically, the following examples are discussed: the preparation of bismuth NPs, the synthesis of copper indium sulfide nanocrystals, and the aggregation of neurological proteins. Because the last process is found to obey reaction-limited colloid aggregation (RLCA) kinetics, potential connections between protein aggregation rates, the onset of neurological disease, and population lifespan dynamics are suggested by drawing a parallel between RLCA kinetics and Gompertz kinetics. The physical chemistry underpinning NP aggregation is investigated, and a detailed definition of the rate constant of aggregation, k(a), is put forth that provides insight into the origin of the activation energy barrier of aggregation. For the two nanocrystal preparations investigated, the initial kinetics are found to be well-described by the author's dispersive kinetic model for nucleation-and-growth, while the late-stage NP size evolution is dominated by OR. At intermediate times, it is thought that the two mechanisms both contribute to the NP growth, resulting in PSD focusing as discussed in a previous work [Skrdla, P. J. J. Phys. Chem. C2012, 116, 214-225]. On the basis of these two mechanisms, a synthetic procedure for obtaining monodisperse NP PSDs, of small and/or systematically targeted mean sizes, is proposed.

DOI: 10.1021/la205034u
PubMed: 22324463

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.</title>
<author>
<name sortKey="Skrdla, Peter J" uniqKey="Skrdla P">Peter J Skrdla</name>
<affiliation>
<nlm:affiliation>peter_skrdla@merck.com</nlm:affiliation>
<country wicri:rule="url">Colombie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1021/la205034u</idno>
<idno type="RBID">pubmed:22324463</idno>
<idno type="pmid">22324463</idno>
<idno type="wicri:Area/Main/Corpus">000F00</idno>
<idno type="wicri:Area/Main/Curation">000F00</idno>
<idno type="wicri:Area/Main/Exploration">000A97</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (metabolism)</term>
<term>Animals</term>
<term>Biophysical Phenomena</term>
<term>Bismuth (chemistry)</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Mathematical Concepts</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Models, Molecular</term>
<term>Models, Neurological</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Nanoparticles (chemistry)</term>
<term>Neoplasms (etiology)</term>
<term>Neoplasms (metabolism)</term>
<term>Nerve Tissue Proteins (chemistry)</term>
<term>Nervous System Diseases (etiology)</term>
<term>Nervous System Diseases (metabolism)</term>
<term>Particle Size</term>
<term>Protein Multimerization</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bismuth</term>
<term>Macromolecular Substances</term>
<term>Multiprotein Complexes</term>
<term>Nerve Tissue Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Neoplasms</term>
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Aging</term>
<term>Neoplasms</term>
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biophysical Phenomena</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mathematical Concepts</term>
<term>Models, Molecular</term>
<term>Models, Neurological</term>
<term>Particle Size</term>
<term>Protein Multimerization</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Kinetic models for nucleation, denucleation, Ostwald ripening (OR), and nanoparticle (NP) aggregation are presented and discussed from a physicochemical standpoint, in terms of their role in current NP preparations. Each of the four solid-state mechanisms discussed predict a distinct time dependence for the evolution of the mean particle radius over time. Additionally, they each predict visually different particle size distributions (PSDs) under limiting steady-state (time-independent) conditions. While nucleation and denucleation represent phase transformation mechanisms, OR and NP aggregation do not. Thus, when modeling solid-state kinetics relevant to NP processing, either the time evolution of the mean particle radius or the fractional conversion data should be fit using appropriate models (discussed herein), without confusing/combining the two classes of models. Experimental data taken from the recent literature are used to demonstrate the usefulness of the models in real-world applications. Specifically, the following examples are discussed: the preparation of bismuth NPs, the synthesis of copper indium sulfide nanocrystals, and the aggregation of neurological proteins. Because the last process is found to obey reaction-limited colloid aggregation (RLCA) kinetics, potential connections between protein aggregation rates, the onset of neurological disease, and population lifespan dynamics are suggested by drawing a parallel between RLCA kinetics and Gompertz kinetics. The physical chemistry underpinning NP aggregation is investigated, and a detailed definition of the rate constant of aggregation, k(a), is put forth that provides insight into the origin of the activation energy barrier of aggregation. For the two nanocrystal preparations investigated, the initial kinetics are found to be well-described by the author's dispersive kinetic model for nucleation-and-growth, while the late-stage NP size evolution is dominated by OR. At intermediate times, it is thought that the two mechanisms both contribute to the NP growth, resulting in PSD focusing as discussed in a previous work [Skrdla, P. J. J. Phys. Chem. C2012, 116, 214-225]. On the basis of these two mechanisms, a synthetic procedure for obtaining monodisperse NP PSDs, of small and/or systematically targeted mean sizes, is proposed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22324463</PMID>
<DateCreated>
<Year>2012</Year>
<Month>03</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5827</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Langmuir : the ACS journal of surfaces and colloids</Title>
<ISOAbbreviation>Langmuir</ISOAbbreviation>
</Journal>
<ArticleTitle>Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.</ArticleTitle>
<Pagination>
<MedlinePgn>4842-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/la205034u</ELocationID>
<Abstract>
<AbstractText>Kinetic models for nucleation, denucleation, Ostwald ripening (OR), and nanoparticle (NP) aggregation are presented and discussed from a physicochemical standpoint, in terms of their role in current NP preparations. Each of the four solid-state mechanisms discussed predict a distinct time dependence for the evolution of the mean particle radius over time. Additionally, they each predict visually different particle size distributions (PSDs) under limiting steady-state (time-independent) conditions. While nucleation and denucleation represent phase transformation mechanisms, OR and NP aggregation do not. Thus, when modeling solid-state kinetics relevant to NP processing, either the time evolution of the mean particle radius or the fractional conversion data should be fit using appropriate models (discussed herein), without confusing/combining the two classes of models. Experimental data taken from the recent literature are used to demonstrate the usefulness of the models in real-world applications. Specifically, the following examples are discussed: the preparation of bismuth NPs, the synthesis of copper indium sulfide nanocrystals, and the aggregation of neurological proteins. Because the last process is found to obey reaction-limited colloid aggregation (RLCA) kinetics, potential connections between protein aggregation rates, the onset of neurological disease, and population lifespan dynamics are suggested by drawing a parallel between RLCA kinetics and Gompertz kinetics. The physical chemistry underpinning NP aggregation is investigated, and a detailed definition of the rate constant of aggregation, k(a), is put forth that provides insight into the origin of the activation energy barrier of aggregation. For the two nanocrystal preparations investigated, the initial kinetics are found to be well-described by the author's dispersive kinetic model for nucleation-and-growth, while the late-stage NP size evolution is dominated by OR. At intermediate times, it is thought that the two mechanisms both contribute to the NP growth, resulting in PSD focusing as discussed in a previous work [Skrdla, P. J. J. Phys. Chem. C2012, 116, 214-225]. On the basis of these two mechanisms, a synthetic procedure for obtaining monodisperse NP PSDs, of small and/or systematically targeted mean sizes, is proposed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skrdla</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
<Affiliation>peter_skrdla@merck.com</Affiliation>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Langmuir</MedlineTA>
<NlmUniqueID>9882736</NlmUniqueID>
<ISSNLinking>0743-7463</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Nerve Tissue Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U015TT5I8H</RegistryNumber>
<NameOfSubstance>Bismuth</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Aging</DescriptorName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Biophysical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Bismuth</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Mathematical Concepts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName MajorTopicYN="N">etiology</QualifierName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nerve Tissue Proteins</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nervous System Diseases</DescriptorName>
<QualifierName MajorTopicYN="Y">etiology</QualifierName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>2</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/la205034u</ArticleId>
<ArticleId IdType="pubmed">22324463</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22324463
   |texte=   Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22324463" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024